3.483 \(\int x^4 \left (c+d x+e x^2+f x^3\right ) \sqrt{a+b x^4} \, dx\)

Optimal. Leaf size=418 \[ -\frac{a^{7/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (7 \sqrt{a} e+5 \sqrt{b} c\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{105 b^{7/4} \sqrt{a+b x^4}}+\frac{2 a^{9/4} e \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{15 b^{7/4} \sqrt{a+b x^4}}-\frac{a^2 d \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{16 b^{3/2}}-\frac{2 a^2 e x \sqrt{a+b x^4}}{15 b^{3/2} \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{\left (a+b x^4\right )^{3/2} \left (8 a f-15 b d x^2\right )}{120 b^2}+\frac{1}{63} x^5 \sqrt{a+b x^4} \left (9 c+7 e x^2\right )+\frac{2 a c x \sqrt{a+b x^4}}{21 b}-\frac{a d x^2 \sqrt{a+b x^4}}{16 b}+\frac{2 a e x^3 \sqrt{a+b x^4}}{45 b}+\frac{f x^4 \left (a+b x^4\right )^{3/2}}{10 b} \]

[Out]

(2*a*c*x*Sqrt[a + b*x^4])/(21*b) - (a*d*x^2*Sqrt[a + b*x^4])/(16*b) + (2*a*e*x^3
*Sqrt[a + b*x^4])/(45*b) - (2*a^2*e*x*Sqrt[a + b*x^4])/(15*b^(3/2)*(Sqrt[a] + Sq
rt[b]*x^2)) + (x^5*(9*c + 7*e*x^2)*Sqrt[a + b*x^4])/63 + (f*x^4*(a + b*x^4)^(3/2
))/(10*b) - ((8*a*f - 15*b*d*x^2)*(a + b*x^4)^(3/2))/(120*b^2) - (a^2*d*ArcTanh[
(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/(16*b^(3/2)) + (2*a^(9/4)*e*(Sqrt[a] + Sqrt[b]*x
^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a
^(1/4)], 1/2])/(15*b^(7/4)*Sqrt[a + b*x^4]) - (a^(7/4)*(5*Sqrt[b]*c + 7*Sqrt[a]*
e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF
[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(105*b^(7/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi [A]  time = 1.07942, antiderivative size = 418, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 12, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4 \[ -\frac{a^{7/4} \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} \left (7 \sqrt{a} e+5 \sqrt{b} c\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{105 b^{7/4} \sqrt{a+b x^4}}+\frac{2 a^{9/4} e \left (\sqrt{a}+\sqrt{b} x^2\right ) \sqrt{\frac{a+b x^4}{\left (\sqrt{a}+\sqrt{b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{15 b^{7/4} \sqrt{a+b x^4}}-\frac{a^2 d \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )}{16 b^{3/2}}-\frac{2 a^2 e x \sqrt{a+b x^4}}{15 b^{3/2} \left (\sqrt{a}+\sqrt{b} x^2\right )}-\frac{\left (a+b x^4\right )^{3/2} \left (8 a f-15 b d x^2\right )}{120 b^2}+\frac{1}{63} x^5 \sqrt{a+b x^4} \left (9 c+7 e x^2\right )+\frac{2 a c x \sqrt{a+b x^4}}{21 b}-\frac{a d x^2 \sqrt{a+b x^4}}{16 b}+\frac{2 a e x^3 \sqrt{a+b x^4}}{45 b}+\frac{f x^4 \left (a+b x^4\right )^{3/2}}{10 b} \]

Antiderivative was successfully verified.

[In]  Int[x^4*(c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4],x]

[Out]

(2*a*c*x*Sqrt[a + b*x^4])/(21*b) - (a*d*x^2*Sqrt[a + b*x^4])/(16*b) + (2*a*e*x^3
*Sqrt[a + b*x^4])/(45*b) - (2*a^2*e*x*Sqrt[a + b*x^4])/(15*b^(3/2)*(Sqrt[a] + Sq
rt[b]*x^2)) + (x^5*(9*c + 7*e*x^2)*Sqrt[a + b*x^4])/63 + (f*x^4*(a + b*x^4)^(3/2
))/(10*b) - ((8*a*f - 15*b*d*x^2)*(a + b*x^4)^(3/2))/(120*b^2) - (a^2*d*ArcTanh[
(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/(16*b^(3/2)) + (2*a^(9/4)*e*(Sqrt[a] + Sqrt[b]*x
^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticE[2*ArcTan[(b^(1/4)*x)/a
^(1/4)], 1/2])/(15*b^(7/4)*Sqrt[a + b*x^4]) - (a^(7/4)*(5*Sqrt[b]*c + 7*Sqrt[a]*
e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF
[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(105*b^(7/4)*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 102.131, size = 386, normalized size = 0.92 \[ \frac{2 a^{\frac{9}{4}} e \sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) E\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{15 b^{\frac{7}{4}} \sqrt{a + b x^{4}}} - \frac{a^{\frac{7}{4}} \sqrt{\frac{a + b x^{4}}{\left (\sqrt{a} + \sqrt{b} x^{2}\right )^{2}}} \left (\sqrt{a} + \sqrt{b} x^{2}\right ) \left (7 \sqrt{a} e + 5 \sqrt{b} c\right ) F\left (2 \operatorname{atan}{\left (\frac{\sqrt [4]{b} x}{\sqrt [4]{a}} \right )}\middle | \frac{1}{2}\right )}{105 b^{\frac{7}{4}} \sqrt{a + b x^{4}}} - \frac{a^{2} d \operatorname{atanh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a + b x^{4}}} \right )}}{16 b^{\frac{3}{2}}} - \frac{2 a^{2} e x \sqrt{a + b x^{4}}}{15 b^{\frac{3}{2}} \left (\sqrt{a} + \sqrt{b} x^{2}\right )} + \frac{2 a c x \sqrt{a + b x^{4}}}{21 b} - \frac{a d x^{2} \sqrt{a + b x^{4}}}{16 b} + \frac{2 a e x^{3} \sqrt{a + b x^{4}}}{45 b} + \frac{x^{5} \sqrt{a + b x^{4}} \left (9 c + 7 e x^{2}\right )}{63} + \frac{f x^{4} \left (a + b x^{4}\right )^{\frac{3}{2}}}{10 b} - \frac{\left (a + b x^{4}\right )^{\frac{3}{2}} \left (8 a f - 15 b d x^{2}\right )}{120 b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**4*(f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2),x)

[Out]

2*a**(9/4)*e*sqrt((a + b*x**4)/(sqrt(a) + sqrt(b)*x**2)**2)*(sqrt(a) + sqrt(b)*x
**2)*elliptic_e(2*atan(b**(1/4)*x/a**(1/4)), 1/2)/(15*b**(7/4)*sqrt(a + b*x**4))
 - a**(7/4)*sqrt((a + b*x**4)/(sqrt(a) + sqrt(b)*x**2)**2)*(sqrt(a) + sqrt(b)*x*
*2)*(7*sqrt(a)*e + 5*sqrt(b)*c)*elliptic_f(2*atan(b**(1/4)*x/a**(1/4)), 1/2)/(10
5*b**(7/4)*sqrt(a + b*x**4)) - a**2*d*atanh(sqrt(b)*x**2/sqrt(a + b*x**4))/(16*b
**(3/2)) - 2*a**2*e*x*sqrt(a + b*x**4)/(15*b**(3/2)*(sqrt(a) + sqrt(b)*x**2)) +
2*a*c*x*sqrt(a + b*x**4)/(21*b) - a*d*x**2*sqrt(a + b*x**4)/(16*b) + 2*a*e*x**3*
sqrt(a + b*x**4)/(45*b) + x**5*sqrt(a + b*x**4)*(9*c + 7*e*x**2)/63 + f*x**4*(a
+ b*x**4)**(3/2)/(10*b) - (a + b*x**4)**(3/2)*(8*a*f - 15*b*d*x**2)/(120*b**2)

_______________________________________________________________________________________

Mathematica [C]  time = 0.859589, size = 296, normalized size = 0.71 \[ \frac{-672 a^{5/2} \sqrt{b} e \sqrt{\frac{b x^4}{a}+1} E\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )+\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \left (-\left (a+b x^4\right ) \left (336 a^2 f-a b x (480 c+7 x (45 d+8 x (4 e+3 f x)))-2 b^2 x^5 \left (360 c+7 x \left (45 d+40 e x+36 f x^2\right )\right )\right )-315 a^2 \sqrt{b} d \sqrt{a+b x^4} \tanh ^{-1}\left (\frac{\sqrt{b} x^2}{\sqrt{a+b x^4}}\right )\right )+96 a^2 \sqrt{b} \sqrt{\frac{b x^4}{a}+1} \left (7 \sqrt{a} e+5 i \sqrt{b} c\right ) F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} x\right )\right |-1\right )}{5040 b^2 \sqrt{\frac{i \sqrt{b}}{\sqrt{a}}} \sqrt{a+b x^4}} \]

Antiderivative was successfully verified.

[In]  Integrate[x^4*(c + d*x + e*x^2 + f*x^3)*Sqrt[a + b*x^4],x]

[Out]

(Sqrt[(I*Sqrt[b])/Sqrt[a]]*(-((a + b*x^4)*(336*a^2*f - 2*b^2*x^5*(360*c + 7*x*(4
5*d + 40*e*x + 36*f*x^2)) - a*b*x*(480*c + 7*x*(45*d + 8*x*(4*e + 3*f*x))))) - 3
15*a^2*Sqrt[b]*d*Sqrt[a + b*x^4]*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]]) - 672*a
^(5/2)*Sqrt[b]*e*Sqrt[1 + (b*x^4)/a]*EllipticE[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a
]]*x], -1] + 96*a^2*Sqrt[b]*((5*I)*Sqrt[b]*c + 7*Sqrt[a]*e)*Sqrt[1 + (b*x^4)/a]*
EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1])/(5040*Sqrt[(I*Sqrt[b])/Sq
rt[a]]*b^2*Sqrt[a + b*x^4])

_______________________________________________________________________________________

Maple [C]  time = 0.041, size = 390, normalized size = 0.9 \[{\frac{c{x}^{5}}{7}\sqrt{b{x}^{4}+a}}+{\frac{2\,acx}{21\,b}\sqrt{b{x}^{4}+a}}-{\frac{2\,{a}^{2}c}{21\,b}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{\frac{d{x}^{2}}{8\,b} \left ( b{x}^{4}+a \right ) ^{{\frac{3}{2}}}}-{\frac{ad{x}^{2}}{16\,b}\sqrt{b{x}^{4}+a}}-{\frac{{a}^{2}d}{16}\ln \left ( \sqrt{b}{x}^{2}+\sqrt{b{x}^{4}+a} \right ){b}^{-{\frac{3}{2}}}}+{\frac{e{x}^{7}}{9}\sqrt{b{x}^{4}+a}}+{\frac{2\,ae{x}^{3}}{45\,b}\sqrt{b{x}^{4}+a}}-{{\frac{2\,i}{15}}e{a}^{{\frac{5}{2}}}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){b}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}+{{\frac{2\,i}{15}}e{a}^{{\frac{5}{2}}}\sqrt{1-{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{b}{\frac{1}{\sqrt{a}}}}}{\it EllipticE} \left ( x\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}},i \right ){b}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{{i\sqrt{b}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{b{x}^{4}+a}}}}-{\frac{f \left ( -3\,b{x}^{4}+2\,a \right ) }{30\,{b}^{2}} \left ( b{x}^{4}+a \right ) ^{{\frac{3}{2}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^4*(f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(1/2),x)

[Out]

1/7*c*x^5*(b*x^4+a)^(1/2)+2/21*a*c*x*(b*x^4+a)^(1/2)/b-2/21*c/b*a^2/(I/a^(1/2)*b
^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b
*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+1/8*d*x^2*(b*x^4+a)^(3/2)
/b-1/16*a*d*x^2*(b*x^4+a)^(1/2)/b-1/16*d*a^2/b^(3/2)*ln(b^(1/2)*x^2+(b*x^4+a)^(1
/2))+1/9*e*x^7*(b*x^4+a)^(1/2)+2/45*a*e*x^3*(b*x^4+a)^(1/2)/b-2/15*I*e/b^(3/2)*a
^(5/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^
(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+2/15*I
*e/b^(3/2)*a^(5/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+
I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/
2),I)-1/30*f*(b*x^4+a)^(3/2)*(-3*b*x^4+2*a)/b^2

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )} x^{4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)*x^4,x, algorithm="maxima")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)*x^4, x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left ({\left (f x^{7} + e x^{6} + d x^{5} + c x^{4}\right )} \sqrt{b x^{4} + a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)*x^4,x, algorithm="fricas")

[Out]

integral((f*x^7 + e*x^6 + d*x^5 + c*x^4)*sqrt(b*x^4 + a), x)

_______________________________________________________________________________________

Sympy [A]  time = 10.2662, size = 252, normalized size = 0.6 \[ \frac{a^{\frac{3}{2}} d x^{2}}{16 b \sqrt{1 + \frac{b x^{4}}{a}}} + \frac{\sqrt{a} c x^{5} \Gamma \left (\frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{5}{4} \\ \frac{9}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac{9}{4}\right )} + \frac{3 \sqrt{a} d x^{6}}{16 \sqrt{1 + \frac{b x^{4}}{a}}} + \frac{\sqrt{a} e x^{7} \Gamma \left (\frac{7}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{7}{4} \\ \frac{11}{4} \end{matrix}\middle |{\frac{b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac{11}{4}\right )} - \frac{a^{2} d \operatorname{asinh}{\left (\frac{\sqrt{b} x^{2}}{\sqrt{a}} \right )}}{16 b^{\frac{3}{2}}} + f \left (\begin{cases} - \frac{a^{2} \sqrt{a + b x^{4}}}{15 b^{2}} + \frac{a x^{4} \sqrt{a + b x^{4}}}{30 b} + \frac{x^{8} \sqrt{a + b x^{4}}}{10} & \text{for}\: b \neq 0 \\\frac{\sqrt{a} x^{8}}{8} & \text{otherwise} \end{cases}\right ) + \frac{b d x^{10}}{8 \sqrt{a} \sqrt{1 + \frac{b x^{4}}{a}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**4*(f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(1/2),x)

[Out]

a**(3/2)*d*x**2/(16*b*sqrt(1 + b*x**4/a)) + sqrt(a)*c*x**5*gamma(5/4)*hyper((-1/
2, 5/4), (9/4,), b*x**4*exp_polar(I*pi)/a)/(4*gamma(9/4)) + 3*sqrt(a)*d*x**6/(16
*sqrt(1 + b*x**4/a)) + sqrt(a)*e*x**7*gamma(7/4)*hyper((-1/2, 7/4), (11/4,), b*x
**4*exp_polar(I*pi)/a)/(4*gamma(11/4)) - a**2*d*asinh(sqrt(b)*x**2/sqrt(a))/(16*
b**(3/2)) + f*Piecewise((-a**2*sqrt(a + b*x**4)/(15*b**2) + a*x**4*sqrt(a + b*x*
*4)/(30*b) + x**8*sqrt(a + b*x**4)/10, Ne(b, 0)), (sqrt(a)*x**8/8, True)) + b*d*
x**10/(8*sqrt(a)*sqrt(1 + b*x**4/a))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \sqrt{b x^{4} + a}{\left (f x^{3} + e x^{2} + d x + c\right )} x^{4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)*x^4,x, algorithm="giac")

[Out]

integrate(sqrt(b*x^4 + a)*(f*x^3 + e*x^2 + d*x + c)*x^4, x)